Errata and Updates for the 2022 ACTEX Manual for Exam P

(Last updated 09/11/2023) sorted by page

Page 106 Solution to Problem 1. Fifth line.
Change $\binom{8}{2}$ to $\binom{8}{3}$.
Page 108 Solution to Problem 11. Last line.
Change Answer A to Answer C.

Page 140 Last line.

Change the formula to:

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[(X-E[X])^{2}\right]=E\left[\left(X-\frac{7}{2}\right)^{2}\right] \\
& =\left(1-\frac{7}{2}\right)^{2} \times \frac{1}{6}+\left(2-\frac{7}{2}\right)^{2} \times \frac{1}{6}+\cdots+\left(6-\frac{7}{2}\right)^{2} \times \frac{1}{6}=\frac{35}{12}
\end{aligned}
$$

Page 163 Solution to Problem 21. Third and Fourth line.
Change "low-risk drivers" to "high-risk drivers".
Page 180 4th Line from the bottom.
The numerical answer should be 0.000833524 instead of 0.0750 , namely
$\frac{10!}{2!\times 1!\times 0!\times 3!\times 1!\times 3!} \times\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{3}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{3}=0.000833524$.
Page 217 The Variance of the Lognormal distribution
Change it to

$$
e^{2 \mu+\sigma^{2}} \times\left(e^{\sigma^{2}}-1\right)
$$

Page 240 Problem 8. In the table.
The probability w.r.t. the Amounts of Loss 500 and 1,000 should be 0.060 and 0.030 .

Page 254 At the begining of the page
Add
Order statistics for a continuous random variable X
and at the end of first line, change "The density or probability function" to "In the continuous case the density function".

Page 256 At the begining of the page, before Section 9.3
Add the following paragraphs:
Order statistics for a discrete random variable X
If X has a discrete distribution, the distributions of the order statistics for a random sample from the distribution of X are found using combinatorial methods. An illustration based on the die toss example described will help to explain this.
Suppose that $Y_{1}, Y_{2}, \ldots, Y_{10}$ are the order statistics for a random sample of the outcomes of 10 independent tosses of a fair die (stating that the tosses are independent is redundant since the definition of a random sample includes the requirement that the outcomes are independent). Suppose we wish to find the probability $P\left[Y_{8}=4\right]$, the probability that the third from the largest toss (eighth from the smallest toss) is a 4.
In the case of X being discrete, it is easier to look at the distribution functions of the Y_{k} 's than the probability functions. Since X is discrete, each Y_{k} is also discrete so that
$P\left[Y_{8}=4\right]=P\left[Y_{8} \leq 4\right]-P\left[Y_{8} \leq 3\right]$. Finding the cdf of Y_{8} is a combinatorial problem.
To have $Y_{8} \leq 4$ we must have at least 8 tosses ≤ 4, which means either 8 , 9 or all 10 of the tosses are ≤ 4. The probability of any one of the tosses of a fair die being ≤ 4 is $\frac{4}{6}=\frac{2}{3}$. The probability that exactly 8 out of 10 independent tosses of a fair die are ≤ 4 is $\binom{10}{8} \times\left(\frac{2}{3}\right)^{8} \times\left(\frac{1}{3}\right)^{2}$. In a similar way we get the probability that exactly 9 of the 10 tosses are ≤ 4 to be $\binom{10}{9} \times\left(\frac{2}{3}\right)^{9} \times\left(\frac{1}{3}\right)^{1}$, and the probability that exactly 10 of the tosses is ≤ 4 is $\binom{10}{10} \times\left(\frac{2}{3}\right)^{1} 0 \times\left(\frac{1}{3}\right)^{0}$. The sum of these three probabilities is $P\left[Y_{8} \leq 4\right]$. In a similar way we can find $P\left[Y_{8} \leq 3\right]$ as the sum of the probabilities of exactly 8,9 or 10 tosses are ≤ 3.
In general for a discrete integer-valued random variable X, the k-th order statistic probability $P\left[Y_{k}=j\right]$ is found as $P\left[Y_{k} \leq j\right]-P\left[Y_{k} \leq j-1\right]$, where $P\left[Y_{k} \leq j\right]$ and $P\left[Y_{k} \leq j-1\right]$ are found using combinatorial methods.
This level of detail involving order statistics is unlikely to arise on Exam P.

Page 266 Solution to Problem 14. Last line.
Change $\Phi(2.28)=0.9987$ to $\Phi(2.28)=0.9887$.
Page 290 Problem 2. Second rom of the table.
Change 200,00 to 200,000.

Page 300 Solution to Problem 4. Seventh line.
Add the missing e so that the formula becomes:

$$
\begin{aligned}
\int_{2}^{\infty} t \times \frac{1}{3} e^{-t / 3} d t=\int_{2}^{\infty} t d\left(-e^{-t / 3}\right)=-\left.t e^{-t / 3}\right|_{2} ^{\infty}-\int_{2}^{\infty}-e^{-t / 3} d t & =2 e^{-2 / 3}+3 e^{-2 / 3} \\
& =5 e^{-2 / 3}
\end{aligned}
$$

Page 320 Problem 8.
Change the first sentence to:
Two players put one dollar each into a pot.

Page 322 Problem 21.

Change the choices to:
(A) $\frac{1}{3(9 a+3)}$
(B) $\frac{2}{3(9 a+3)}$
(C) $\frac{1}{3(3 a+1)}$
(D) $\frac{4}{3(9 a+3)}$
(E) $\frac{5}{3(9 a+3)}$

Page 327 Solution to Problem 5.

The last number should be 3 and the correct answer should be D instead of E .

Page 331 Solution to Problem 16.

Change the final answer from Answer C to Answer B.
Page 332 Solution to Problem 21.
Change the last formula to:

$$
E\left[X^{2}\right]-(E[X])^{2}=\frac{a+1}{3 \times(3 a+1)}-\frac{1}{9}=\frac{2}{3(9 a+3)}
$$

Page 343 Problem 27. Last sentence.

Change "Determine the expected amount that the insurer will pay when a loss occurs." to "Determine the variance of the amount that the insurer will pay when a loss occurs."

Page 354 Problem 9. Second line.
Change $P[X>0]$ to $P[X<0]$.
Page 355 Problem 14.
Add the missing choices:
(A) 0.40
(B) 0.45
(C) 0.50
(D) 0.55
(E) 0.60

Page 356 Problem 18.

Complete the question to:
A factory makes three different kinds of bolts: Bolt A, Bolt B, and Bolt C. The factory produces millions of each bolt every year, but makes twice as many of Bolt B as it does of Bolt A. The number of Bolt C made is twice the total of Bolts A and B combined. Four bolts made by the factory are randomly chosen from all the bolts produced by the factory in a given year. Which of the following is most nearly equal to the probability that the sample will contain two of Bolt B and two of Bolt C?
(A) $\frac{8}{243}$
(B) $\frac{96}{625}$
(C) $\frac{384}{2410}$
(D) $\frac{32}{243}$
(E) $\frac{5}{6}$

Page 357 Problem 26. Last sentence.
Change it to: Find the probability that someone charged with a drugrelated crime who is convicted but not sentenced to jail time actually did not commit the crime.

Page 362 Solution to Problem 9.

Change the solution to:
X has mean and variance λ. When applying the normal approximation to an integer-valued random variable, the integer k is replaced by the interval $(k-0.5, k+0.5]$. The normal approximation to $P[X<0]$ with integer correction is

$$
P[X \leq-0.5]=P\left(\frac{X-\lambda}{\sqrt{\lambda}} \leq \frac{-0.5-\lambda}{\sqrt{\lambda}}\right)=\Phi\left(\frac{-0.5-\lambda}{\sqrt{\lambda}}\right) .
$$

We see that $\frac{-0.5-\lambda}{\sqrt{\lambda}} \rightarrow-\infty$ as $\lambda \rightarrow 0$ and also as $\lambda \rightarrow \infty$, so will be a point of maximum of $\Phi\left(\frac{-0.5-\lambda}{\sqrt{\lambda}}\right)$ for some value of λ with $0<\lambda<\infty$.
This maximum will occur where $\frac{-0.5-\lambda}{\sqrt{\lambda}}$ is a maximum since Φ is an increasing function.
Solving

$$
\frac{d}{d \lambda} \frac{-0.5-\lambda}{\sqrt{\lambda}}=\frac{1}{4 \lambda^{3 / 2}}-\frac{1}{2 \lambda^{1 / 2}}=\frac{1}{2 \lambda^{1 / 2}} \times\left(\frac{1}{2 \lambda}-1\right)=0
$$

results in the maximum occurring at $\lambda=\frac{1}{2}$.
Answer B

Page 514 Problem 9. Third line.

Change it to:
$P[K=0]=P\left[X \leq \frac{1}{2}\right]$ and $P[K=k]=P\left[k-\frac{1}{2} \leq X \leq k+\frac{1}{2}\right]$ for
$K=1,2,3, \ldots$
$K=1,2,3, \ldots$

Page 523 Solution to Problem 8.

Replace the solution by:
Note that if a fair coin is tossed $X=x$ times, the number of heads Y has a $\operatorname{Binomial}(n=x, p=1 / 2)$ distribution. This means

$$
\begin{aligned}
E(Y \mid X) & =\frac{1}{2} X \\
E\left(Y^{2} \mid X\right) & =\operatorname{Var}(Y \mid X)+[E(Y \mid X)]^{2}=\left(\frac{1}{2} X\right) \frac{1}{2}+\left(\frac{1}{2} X\right)^{2}=\frac{X+X^{2}}{4}
\end{aligned}
$$

To calculate the desired variance, we use the formula

$$
\operatorname{Var}[Y \mid X \text { is even }]=E\left[Y^{2} \mid X \text { is even }\right]-(E[Y \mid X \text { is even }])^{2}
$$

The conditional mean :

$$
\begin{aligned}
E[Y \mid X \text { is even }] & =E(Y \mid X=2) P(X=2 \mid X \text { is even }) \\
& +E(Y \mid X=4) P(X=4 \mid X \text { is even }) \\
& +E(Y \mid X=6) P(X=6 \mid X \text { is even })
\end{aligned}
$$

When X is even, probability of X being 2,4, or 6 must be the same. Therefore,

$$
P(X=2 \mid X \text { is even })=P(X=4 \mid X \text { is even })=P(X=6 \mid X \text { is even })=\frac{1}{3}
$$

Using the $E(Y \mid X)=X \frac{1}{2}$, we obtain

$$
E[Y \mid X \text { is even }]=\left(2 \times \frac{1}{2}\right) \frac{1}{3}+\left(4 \times \frac{1}{2}\right) \frac{1}{3}+\left(6 \times \frac{1}{2}\right) \frac{1}{3}=2
$$

Similarly, using $E\left(Y^{2} \mid X\right)=\frac{X+X^{2}}{4}$,

$$
\begin{aligned}
E\left[Y^{2} \mid X \text { is even }\right] & =E\left[Y^{2} \mid X=2\right] P[X=2 \mid X \text { is even }] \\
& +E\left[Y^{2} \mid X=4\right] P[X=4 \mid X \text { is even }] \\
& +E\left[Y^{2} \mid X=6\right] P[X=6 \mid X \text { is even }] \\
& =\left(\frac{2+4}{4}\right) \frac{1}{3}+\left(\frac{4+16}{4}\right) \frac{1}{3}+\left(\frac{6+36}{4}\right) \frac{1}{3}=\frac{68}{12} .
\end{aligned}
$$

Conbining, we get $\operatorname{Var}[Y \mid X$ is even $]=\frac{68}{12}-2^{2}=\frac{5}{3}$.

Page 523 Solution to Problem 9.

Replace the solution by:
The pdf of X is $f_{X}(x)=e^{-x}$ for $x>0$.
$P[K=0]=P\left[X \leq \frac{1}{2}\right]=\int_{0}^{1 / 2} e^{-x} d x=1-e^{-1 / 2}$.
$P[X=k]=P\left[k-\frac{1}{2}<X \leq k-\frac{1}{2}\right]=\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} e^{-x} d x=e^{-\frac{k-1}{2}}-e^{-\frac{k+1}{2}}=$ $e^{-k} \times\left[e^{\frac{1}{2}}-e^{-\frac{1}{2}}\right]$.
$E[K]=\sum_{k=0}^{\infty} k \times P[K=k]=\sum_{k=1}^{\infty} k \times P[K=k]$

$$
=\left[e^{\frac{1}{2}}-e^{-\frac{1}{2}}\right] \times \sum_{k=1}^{\infty} k \times e^{-k}=\left[e^{\frac{1}{2}}-e^{-\frac{1}{2}}\right] \times \frac{e^{-1}}{\left(1-e^{-1}\right)^{2}}=.9595 .
$$

Note that we have used the increasing geometric series summation relationship

$$
\sum_{k=1}^{\infty} k \times a^{k}=\frac{a}{(1-a)^{2}} \text { for }-1<a<1 .
$$

Answer B

