ACTEX Learning Flashcards

Learning & Memorizing Key Topics and Formulas

Solution Spring 2019 Edition

Runhuan Feng, Ph.D., FSA, CERA, Daniël Linders, Ph.D. Ambrose Lo, Ph.D., FSA, CERA Copyright © 2019, ACTEX Learning, a division of SRBooks Inc.

No portion may be reproduced or transmitted in any part or by any means without the permission of the publisher.

ISBN 978-1-63588-708-2

Printed in the United States of America.

ACTEX is committed to making continuous improvements to our study material. We thus invite you to provide us with a critique of these flashcards.

Publication: ACTEX SOA SRM Flashcards, Spring 2019 Edition

In preparing for my exam I found this material: (Check one)

____Very Good ____Good ____Satisfactory ___Unsatisfactory

I found the following helpful:

I found the following problems: (Please be specific as to section, specific item, and/or page number)

Please continue on the other side of this card.

To improve these flashcards I would:

Name:	
Address: _	
Phone:	
E-mail:	

(Please provide this information in case clarification is needed.)

Send to: Stephen Camilli ACTEX Learning P.O. Box 715 New Hartford, CT 06057

Or visit our website at www.ActexMadRiver.com to complete the survey on-line. Click on the "Send Us Feedback" link to access the online version. You can also e-mail your comments to Support@ActexMadRiver.com.

Preface

This set of flashcards is meant to complement the *ACTEX Study Manual for SOA Exam SRM (Statistics for Risk Modeling)*. Fully revised in response to the May 2019 edition of the SRM study manual, these flashcards provide a concise summary of the SRM exam material in a readable and presentationoriented format with a view to maximizing retention. Important formulas are displayed to facilitate identification and memorization. Suggestions are given as to which formulas, in our opinion, must be memorized, which formulas are important but can be easily deduced from other results, and which formulas are of secondary importance. The flashcards are particularly suitable for last-minute review—don't forget to take them with you on your way to the CBT exam center!

It should be noted, however, that these flashcards add value to, but are no substitute for reading the SRM study manual. Examples and problems, which are key to exam success, are not included or discussed in these flashcards. We suggest that you first read the manual carefully, go over the in-text examples and (most of the) end-of-chapter problems, then use the flashcards as a means to review what you have learned and to ensure that you have mastered all of the key concepts.

As with the SRM study manual, we would be extremely grateful if you could share your comments and suggestions on these flashcards with us and bring to our attention any potential errors. Please direct your comments and questions to ambrose-lo@uiowa.edu. The authors will try their best to respond to any inquiries as soon as possible and an ongoing list of updates will be maintained online at https://sites.google.com/site/ambroseloyp/publications/SRM.

We wish you the best of luck with your SRM exam!

Runhuan Feng Daniël Linders Ambrose Lo February 2019

Part I Regression Models

Chapter 1 Simple Linear Regression

1.1 Basics

• Simple linear regression (SLR) model equation: An approximately linear relationship between y and x:

where

y is the response variable (a.k.a. dependent variable), x is the explanatory variable (a.k.a. predictors, features), β_0 (intercept) and β_1 (slope) are regression coefficients, ε is the random error term.

In the above model, we say that y is regressed on x (denoted $y \sim x$).

• **Defining property of SLR:** There is only one explanatory variable, namely, *x*.

• Model assumptions:

- A1. The y_i 's are realizations of random variables, while the x_i 's are nonrandom.
- A2. $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ are independent with

$$\mathbb{E}[\varepsilon_i] = 0$$
 and $\operatorname{Var}(\varepsilon_i) = \sigma^2$

for all i = 1, 2, ..., n.

Almost always further assume that ε_i 's are normally distributed, i.e.,

 $\varepsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$

1.2 Model Fitting by Least Squares Method

• Idea of least squares method: Choose β_0 and β_1 to make the sum of squares

the "least."

• Least squares estimates (LSEs):

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad \text{and} \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where

$$\triangleright \ S_{xy} := \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}$$

$$\triangleright \ S_{xx} := \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n \bar{x}^2$$

(Suggestion: Remember the formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$!)

ACTEX Learning © 2019

• How can the calculation of LSEs be tested?

- Case 1. Given the raw data $\{(x_i, y_i)\}_{i=1}^n$ with a relatively small n(e.g., $n \leq 10$) Enter the data into your financial calculator and read the output from its statistics functions.
- Case 2. Given summarized data in the form of various sums, e.g.,

$$\sum_{i=1}^{n} x_{i}, \qquad \sum_{i=1}^{n} y_{i}, \qquad \sum_{i=1}^{n} x_{i}^{2}, \qquad \sum_{i=1}^{n} y_{i}^{2}, \qquad \sum_{i=1}^{n} x_{i}y_{i}.$$

Expand the products in the two sums that appear in $\hat{\beta}_1$ and use the alternative form

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}.$$

• An alternative formula for $\hat{\beta}_1$ in terms of sample correlation:

$$\hat{\beta}_1 = r \times \frac{s_y}{s_x}, \qquad \left(\text{Warning: Not } r \times \frac{s_x}{s_y}! \right)$$

where

 \triangleright s_x and s_y are the sample standard deviations of x and y \triangleright r is the sample correlation coefficient between x and y

• Application of this formula: Slope estimates when regressing y on x and regressing x on y are related via

$$\hat{\beta}_1^{y \sim x} \times \hat{\beta}_1^{x \sim y} = \underbrace{r^2 = R^2}_{\text{see Sect. 1.3}}$$

• Fitted values and residuals: Given $\hat{\beta}_0$ and $\hat{\beta}_1$, we can compute:

1. The fitted value (a.k.a. predicted value) $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

 $\,\vartriangleright\,$ Mnemonic: Obtained from the model equation by

$$\beta_0 \to \hat{\beta}_0, \qquad \beta_1 \to \hat{\beta}_1, \qquad \varepsilon_i \to 0$$

 \triangleright Ideally, \hat{y}_i should be close to y_i .

- 2. The residual $e_i = y_i \hat{y}_i$
 - \triangleright Memory alert: Not $\hat{y}_i y_i!$
 - \triangleright Completely different from ε_i , which is unobservable and which e_i serves to approximate.

• Graphical illustration of fitted regression line and definitions of fitted value and residual:

ACTEX Learning $\bigcirc 2019$

• Sum-to-zero constraints on residuals:

- 1. $\sum_{i=1}^{n} e_i = 0$, provided that β_0 is included in the model Meaning: The residuals offset one another to produce a zero sum; they are negatively correlated.
- 2. $\sum_{i=1}^{n} x_i e_i = 0$ Meaning: The residuals and the explanatory variable values are uncorrelated.

Mnemonic: $\hat{\beta}_0$ and $\hat{\beta}_1$ satisfy

$$\frac{\partial}{\partial \beta_0} SS(\hat{\beta}_0, \hat{\beta}_1) = -2 \sum_{i=1}^n [\underbrace{y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)}_{e_i}] = 0,$$
$$\frac{\partial}{\partial \beta_1} SS(\hat{\beta}_0, \hat{\beta}_1) = -2 \sum_{i=1}^n x_i [\underbrace{y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)}_{e_i}] = 0.$$

ACTEX Learning © 2019

1.3 Assessing Goodness of Fit of the Model

•	Three	kinds	of	\mathbf{sums}	of	squares:
---	-------	-------	----	-----------------	----	----------

Sum of Squares	Abbrev.	Def.	What Does It Measure?
$\underline{\mathrm{T}}\mathrm{otal}\;\mathrm{SS}$	TSS	Variation of response values about \bar{y}	Amount of variability inher- ent in the response prior to performing regression
<u>R</u> esidual SS or Error SS	RSS	Variation of response values about fitted regression line	 Goodness of fit of the SLR model (the lower, the better) Amount of variability of response left unexplained even after introduction of x
<u>Reg</u> ression SS	Reg SS	Variation explained by SLR (or the knowledge of x)	How effective SLR model is in explaining the variation in \boldsymbol{y}

ACTEX Learning $\bigodot 2019$

CHAPTER 1. SIMPLE LINEAR REGRESSION

• ANOVA identity:

$$\underbrace{\sum_{i=1}^{n} (y_i - \bar{y})^2}_{\text{TSS}} = \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{\text{RSS}} + \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{\text{Reg SS}}.$$

• Coefficient of determination:

$$\triangleright$$
 Definition: $R^2 = \frac{\text{Reg SS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$

- ▷ Measures the proportion of variation of response (about its mean) explained by the SLR model
- \triangleright The higher, the better
- Specialized formulas for Reg SS and R^2 under SLR:

$$\triangleright \operatorname{Reg} SS = \hat{\beta}_1^2 S_{xx}$$

$$\triangleright R^2 = r^2 = \operatorname{Corr}(x, y)^2 \text{ (square of correlation between } x \text{ and } y)$$

• ANOVA table:

Source	Sum of Squares	df	Mean Square	F-value
Regression	Reg SS	1	${\rm Reg}~{\rm SS}/1$?
Error	RSS	n-2	$s^2 = \mathrm{RSS}/(n-2)$	
Total	TSS	n-1		

Structure:

- \triangleright Different sources of variation in y
- \triangleright Some "informal" rules for counting df:
 - Reg SS has 1 df because of one explanatory variable
 - RSS has 2 df subtracted from n because of two parameters, β_0 and β_1
- \triangleright Dividing an SS by its *df* results in a *mean square* (MS).

• Mean square error:

$$s^{2} = \frac{\text{RSS}}{\text{df of RSS}} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2};$$

 $s=\sqrt{s^2}$ is the residual standard deviation or residual standard error.

- *F*-test:
 - \triangleright Hypotheses:

$$\underbrace{\mathbf{H}_{0}:\,\beta_{1}=0}_{\text{i.i.d. model}} \quad \text{vs.} \quad \underbrace{\mathbf{H}_{a}:\,\beta_{1}\neq 0}_{\text{SLR model}};$$

a test of the significance/usefulness of x in explaining y > F-statistic:

$$F = \frac{\text{Reg SS}/(\text{df of Reg SS})}{\text{RSS}/(\text{df of RSS})} = \frac{\text{Reg SS}/1}{\text{RSS}/(n-2)}$$

- \triangleright Behavior of *F*-statistic:
 - H₀: Expected value close to one
 - H_a: Tends to be large

• *F*-test: (Cont.)

 \triangleright Going between *F*-statistic and R^2 :

$$F = (n-2) \left(\frac{\text{Reg SS/TSS}}{\text{RSS/TSS}}\right) = (n-2) \left(\frac{R^2}{1-R^2}\right)$$

(Mnemonic: Divide both the numerator and denominator of the F-statistic by TSS to get R^2 .)

1.4 Statistical Inference about β_0 and β_1

- Sampling distributions of $\hat{\beta}_0$ and $\hat{\beta}_1$:
 - \triangleright Linear combination formulas:

$$\hat{\beta}_1 = \sum_{i=1}^n w_i y_i, \quad \text{where } w_i = \frac{x_i - \bar{x}}{S_{xx}}$$
$$\hat{\beta}_0 = \sum_{i=1}^n w_{i,0} y_i, \quad \text{where } w_{i,0} = \frac{1}{n} - \bar{x} w_i$$

(Suggestion: Remembering these weights is recommended, but not absolutely essential)

• Sampling distributions of $\hat{\beta}_0$ and $\hat{\beta}_1$: (Cont.)

$$\triangleright$$
 Unbiased: $\mathbb{E}[\hat{\beta}_j] = \beta_j$ for $j = 0, 1$

 \triangleright Variances:

$$\operatorname{Var}(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right) \quad \text{and} \quad \operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$

(Suggestion: Remember these two formulas!)

 \triangleright Estimated variances: With $\sigma^2 \rightarrow s^2$ (MSE),

$$\widehat{\operatorname{Var}}(\hat{\beta}_0) = s^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right) \quad \text{and} \quad \widehat{\operatorname{Var}}(\hat{\beta}_1) = \frac{s^2}{S_{xx}}$$

- t-test:
 - $\beta_j \neq d$ $\triangleright \ Hypotheses: \ \mathbf{H}_0: \ \beta_j = d \ \text{vs.} \ \mathbf{H}_a: \ \beta_j > d$ $\beta_j < d$
 - \triangleright Important special case: d = 0 (i.e., to test if x is useful) \triangleright t-statistic:

$$t(\hat{\beta}_j) = \frac{\text{LSE} - \text{hypothesized value}}{\text{standard error of LSE}} = \frac{\hat{\beta}_j - d}{\text{SE}(\hat{\beta}_j)}$$

- \triangleright Null distribution: $t(\hat{\beta}_j) \stackrel{\mathrm{H}_0}{\sim} t_{n-2}$
- \triangleright Decision rules and p-value:

H_a	Decision Rule	<i>p</i> -value (<i>t</i> is the observed value of $t(\hat{\beta}_j)$)
$\beta_j \neq d$	$ t(\hat{\beta}_j) > t_{n-2,\alpha/2}$	$\mathbb{P}(t_{n-2} > t) = 2\mathbb{P}(t_{n-2} > t)$
$\beta_j > d$	$t(\hat{\beta}_j) > t_{n-2,\alpha}$	$\mathbb{P}(t_{n-2} > t)$
$\beta_j < d$	$t(\hat{\beta}_j) < -t_{n-2,\alpha}$	$\mathbb{P}(t_{n-2} < t)$

ACTEX Learning © 2019

• Confidence intervals (CIs) for β_0 and β_1 : General structure is

LSE $\pm t$ -quantile \times Standard error $= \hat{\beta}_j \pm t_{n-2,\alpha/2} \times \text{SE}(\hat{\beta}_j).$

 $\,\vartriangleright\,$ E.g.: $\hat{\beta}_1 \pm t_{n-2,\alpha/2} \times \operatorname{SE}(\hat{\beta}_1)$ is the CI for β_1

- \triangleright Construction requires formulas of $SE(\hat{\beta}_0)$ and $SE(\hat{\beta}_1)$
- Relationship between *F*-test and *t*-test for $H_0: \beta_1 = 0$:
 - \triangleright Direct connection between test statistics:

$$F = t(\hat{\beta}_1)^2$$

 \triangleright Importance: Connect

information about $\hat{\beta}_1$ (captured by $t(\hat{\beta}_1)$) with

information about the whole model (captured by F)

1.5 Prediction

• Target (random variable):

$$y_* = \beta_0 + \beta_1 x_* + \varepsilon_*,$$

where x_* is explanatory variable value of interest

• Generic setting:

	response	known values of explanatory variables
	\underline{y}	<u>x</u>
	y_1	x_1
observed	y_2	x_2
(past) data	:	:
	y_n	x_n

Unobserved	y_* (target)	\leftarrow	x_*
(future) data			

• Point predictor:

$$\hat{y}_* = \hat{\beta}_0 + \hat{\beta}_1 x_*$$

(Mnemonic: Set $\beta_0 \to \hat{\beta}_0$, $\beta_1 \to \hat{\beta}_1$, and $\varepsilon_* \to 0$; same trick as fitted values)

• $100(1-\alpha)\%$ prediction interval:

point predictor $\pm t$ -quantile \times st. error of prediction error $= \hat{y}_* \pm t_{n-2,\alpha/2} \times \text{SE}(y_* - \hat{y}_*)$ $= (\hat{\beta}_0 + \hat{\beta}_1 x_*) \pm t_{n-2,\alpha/2} \sqrt{s^2 \left[1 + \frac{1}{n} + \frac{(x_* - \bar{x})^2}{S_{xx}}\right]}$

(Suggestion: Remember this formula!)

• **Remarks on the structure of the prediction interval:** Two sources of uncertainty associated with prediction:

$$\widehat{\operatorname{Var}}(y_* - \hat{y}_*) = \underbrace{s^2}_{(1)} + \underbrace{s^2 \left[\frac{1}{n} + \frac{(x_* - \bar{x})^2}{S_{xx}}\right]}_{(2)}.$$

- ① Variability of the random error ε_* : Reflected in the extra s^2
- (2) Estimation of the true regression line at x_* :
 - $\triangleright \hat{\beta}_0$ and $\hat{\beta}_1$ are only estimates of β_0 and β_1 , and are subject to sampling fluctuations
 - \triangleright Variance of prediction error minimized when $x_* = \bar{x}$ and increases quadratically as x_* moves away from \bar{x}